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The unique structure of C60 has attracted intense
research efforts toward the synthesis and characteriza-
tion of its derivatives. Possible applications of C60

derivatives in the field of biological and materials science
have been reported.1 Much less work has been done on
the chemistry of C70 due to its lower abundance and
higher cost. The lower symmetry of C70 gives rise to a
more complicated pattern of isomeric structures than for
C60 upon functionalization of the fullerene core. Both
theoretical and experimental data show that the [1,9] and
[7,8]bonds2 are by far the most reactive bonds at [6,6]
ring fusions.3 Most addition reactions favor the [1,9]bond
rather than the [7,8]bond,4 and in a few cases only [1,9]
isomers are produced.5 However, none of the known
methods appear to be practical for synthetic purposes.
For example, the reaction of diazo compounds with C70,
which has been widely used in the functionalization of
C60,1c produces mixtures of isomeric products, which are
difficult to separate by flash chromatography.4e,6 Thus,
general methods for the selective functionalization of C70

in good yield are needed.
We recently reported a superior synthesis of [6,6]-

methanofullerene[60] by reaction of stabilized sulfonium

ylides with C60.7 We now wish to report extension of this
strategy to the functionalization of C70, which provides
a solution to the isomer problem mentioned above. A
toluene solution of sulfonium ylide 18 (1.8 equiv) was
added to a solution of C70 (1 equiv, 1.2 mM) in toluene
(Scheme 1). The reaction was instantaneous at room
temperature for entries a, b, and d, while for entry c the
reaction was complete in a few minutes at 40 °C. The
reactions were monitored by HPLC, which showed the
appearance of a monoaddition product together with
unreacted C70 and small amounts of bisaddition products.
Pure monoadducts could be obtained after column chro-
matography on silica gel. 1H-NMR spectra showed the
presence of a single isomer in each case (see Table 1,
entries a-d). Only one singlet appeared for the cyclo-
propane proton for compounds 2a-d, at 3.59, 3.52, 3.67,
and 4.43 ppm, respectively, slightly downfield from that
of the parent [1,9]cyclopropane C71H2 (2.88 ppm).4e The
13C-NMR spectrum of compound 2a shows peaks for 68
carbons in the sp2 region, implying C1 symmetry in the
molecule. The two sp3 carbons appear at 65.33 and 64.23
ppm, respectively, close to those for [1,9]cyclopropane
C70H2,4e while the other cyclopropane carbon appears at
24.26 ppm. FT-IR spectra of 2a-d in KBr show carbonyl
absorption at 1743, 1729, 1684, and 1647 cm-1, respec-
tively. The UV/vis spectra of compounds 2a-d are
almost identical to that of [1,9]-C70H2

9 and [1,9]cyclopro-
pane C71H2,4e suggesting similar addition patterns on the
C70 core. These data strongly suggested that these
adducts possess a [1,9]-closed structure.10
Interestingly, compounds 2a-d are chiral, with a

stereogenic bridging cyclopropane carbon. While the
analogous C60 derivative has a plane of symmetry through
the cyclopropane ring, the C70 antipodes no longer possess
a plane of symmetry due to the asymmetry of the C70 core
(see Figure 1 for enantiomers of compound 2a).11 We
have also successfully achieved chromatographic resolu-
tion of racemic amide 2d on a chiral (S, S)-Whelk-O
HPLC column (Figure 2).12 Solutions of the resolved
enantiomers of 2d in CHCl3 show only weak CD signals
(Figure 2), since the CD originates in this case from the
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asymmetric perturbation of a symmetric chromophore.13
Nonetheless, the near mirror image relationship of the
CD curves is apparent. Similar CD curves were seen by
Diederich et al. for diastereomeric C70 derivatives pre-
pared from the addition of chiral bromomalonate enolate
anions to C70.14 As far as we are aware, the separation
of enantiomers of 2d represents the first resolution of a
racemic monoadduct of C70. Similar resolution of 2a-c
by this method was unsuccessful.
To illustrate the utility of our synthetic strategy, the

tert-butyl ester derivative 2b was hydrolyzed to the

corresponding carboxylic acid 2e in 84% yield using
p-toluenesulfonic acid under reflux.15 The carboxylic acid
2e could be further converted to ester 2f or amino acid
derivatives 2g in 52% and 70% yield, respectively (Scheme
1). Further functionalization of the carboxylic acid 2e
leading to derivatives with potential biological activity
will be reported in due course.

In conclusion, we have demonstrated a new strategy
for the functionalization of fullerene[70] that provides a
simple chemoselective route to [1,9]methanofullerene[70]
derivatives. Amide 2d could be resolved into enanti-
omers on a chiral HPLC column, the first example of the
resolution of a racemic C70 monoadduct. The useful
synthon [1,9]methanofullerene[70]carboxylic acid was
obtained and its further functionalization was illustrated.
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Table 1. Yields and Spectroscopic Data of [1,9]Methanofullerene[70] Derivativesa

entry R 2 % yield 1H-NMR (200 MHz, 2/1 CS2/CDCl3)

a OEt (C71H1)COOEt 60 4.48 (q, J ) 7.2 Hz, 2H), 3.59 (s, 1H), 1.54(t, J ) 7.2 Hz, 3H)
b O-t-Bu (C71H1)COO-t-Bu 46 3.52 (s, 1H), 1.71 (s, 9H)
c Ph (C71H1)COPh 59 8.45-8.40 (m, 2H), 7.78-7.70 (m, 3H), 4.43 (s, 1H)
d NEt2 (C71H1)CONEt2 40 4.00 (q, J ) 7.0 Hz, 2H), 3.67 (s, 1H), 3.64 (q, J ) 7.0 Hz, 2H), 1.65

(t, J ) 7.2 Hz, 3H), 1.33 (t, J ) 7.0 Hz, 3H)
e OH (C71H1)COOH 84 3.65 (s, 1H)
f OCH2Ph (C71H1)COOCH2Ph 52 7.54-7.30 (m, 5H), 5.43 (s, 2H), 3.63 (s, 1H)
g NHCH2COOEt (C71H1)COONHCH2COOEt 70 6.95 (m, 1H), 4.33 (q, J ) 7.1 Hz, 2H), 4.29 (d, J ) 4.3 Hz, 2H),

3.58 (s, 1H), 1.40 (t, J ) 7.1 Hz, 3H)
a The cyclopropane protons are underlined.

Figure 1. Computer models (CSC chem3D) of the enanti-
omers of 2a (A and B) and their C60 analog (C). In C there is
a plane of symmetry through the cyclopropane ring (C1 and
C2 are equivalent). In A and B there is no such plane of
symmetry, due to intrinsic asymmetry in the C70 core (C1 and
C9 are nonequivalent).

Figure 2. Circular dichroism curves for enantiomers of 2d
(25 °C, 0.28 mM in CHCl3). The insert shows the chiral HPLC
chromatogram of racemic 2d on a (S,S)-Whelk-O column
(eluent: 97/3 toluene/CH3CN, flow rate 1 mL/min, UV detec-
tion at 354 nm, 25 °C). Curve X corresponds to peak 2 from
chiral HPLC (86.5% ee), curve Y corresponds to peak 1 (67%
ee).
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